HORIZONTAL SWEEP CIRCUIT ADJUSTMENTS

Suggested Alignment Points:
- General CEM NEW 3501, 6565, 5565
- WEBCO PRT-8, PRT-8, PRT-8A, PRT-8B

Tune in a strong TV signal and set controls for normal reception. Set horizontal blank control to center of 8 sweeps, and adjust horizontal stabilizer knob (8b) until picture breaks up. (It may be necessary to adjust horizontal frequency for best in.)

Adjust horizontal hold control for best linearity. Repeat adjustments if necessary.

CABINET—REAR VIEW

DISASSEMBLY INSTRUCTIONS

CABINET REMOVAL
1. Remove 8 spade-type leads, channel selector, and fine tuning knob.
2. Remove 8 screws from rear of cabinet.
3. Remove side strips.
4. Remove 1 screw (at bottom) on each side.
5. Cabinet may now be pulled off rear of picture tube and chassis.

PICTURE TUBE AND ELECTRODE ASSEMBLY REMOVAL
- The front escutcheon holds chassis, safety glass and picture tube assembly together. It is necessary in removing cabinet for access to picture tube.
- Disconnect power, hi voltage lead, and picture tube socket. Slide escutcheon (with picture tube and safety glass assembly) out from chassis.
- Pull out the picture tube from chassis.

SERVICING IN THE FIELD

SAFETY GLASS REMOVAL
Follow “Cabinet Removal” instructions on back page.

FUSE
- L. V. Supply Fuse (4/3A) is located at rear of chassis.

TUNER OSCILLATOR ADJUSTMENTS
- To touch up the VHF Oscillator, remove Coaxial Selector and Fine Tuning knob.

AOC
- The AOC is adjusted to 4 marked AOC and Antenna Gain controls. (For location, see “Take Placement Chart”.)

FOCUS
- Provision is made to vary the focus on this receiver.

HORIZONTAL OSCILLATOR FIELD ADJUSTMENTS
- Course adjustment of the Horizontal Field is accomplished by the proper setting of the Horizontal Stabilizer knob. (See back page for “Horizontal Sweep Circuit Adjustments.”)
- The horizontal drive may be varied by a Horizontal Drive control. (For location, see “Take Placement Chart.”)

CENTERING
- Centering is accomplished by 2 magnetic rings, located behind the hinge, on the back of the picture tube.

HOWARD W. SAMS & CO., INC. Indianapolis 6, Indiana

The listing of any available replacement part herein does not constitute in any case a recommendation, warranty or guarantee by Howard W. Sams & Co., Inc., as to the quality and suitability of such replacement part. The manufacturer of replacement parts listed is responsible for the satisfaction of any inquiries received from information furnished to Howard W. Sams & Co., Inc., by the manufacturer of LADA.
ALIGNMENT INSTRUCTIONS

PRE-ALIGNMENT INSTRUCTIONS

The high Voltage lead should be securely taped and kept away from the chassis.

1. To check video IF transformers for alignment, remove rear (left side) IF circuit board. Remove two mounting screws from power socket and slide socket into mounting hole in chassis. Plug in circuit board and turn on set. Allow a 30 minute warm-up period for the receiver and test equipment.

Suggested Alignment Tests: At this time A- GENERAL CEMENTmixed, R-77, 77- WALTICO 2855

VIDEO IF ALIGNMENT

Use only enough generator output to provide a visible indication.

Connect the negative lead of a 5 volt line supply to point .

Connect the synchronized sweep voltage from the sweep generator to the horizontal input of the oscilloscope for horizontal deflection.

<table>
<thead>
<tr>
<th>SWEEP GENERATOR COUNTRY</th>
<th>SWEEP GENERATOR FREQUENCY</th>
<th>MARKER GENERATOR FREQUENCY</th>
<th>MARKER GENERATOR CHANNEL</th>
<th>CONNECT SCOPE</th>
<th>ADJUST</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>51, M1C</td>
<td>Any non-interfering channel</td>
<td>Vertical hold on oscilloscope</td>
<td>A1</td>
<td></td>
<td>Adjust for maximum grid and symmetrical response similar to Fig. 1 with markers as shown.</td>
</tr>
<tr>
<td>2.</td>
<td>51, M3C</td>
<td>Any non-interfering channel</td>
<td>Vertical hold on oscilloscope</td>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>51, 451C</td>
<td>Any non-interfering channel</td>
<td>Vertical hold on oscilloscope</td>
<td>A3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>51, 451C</td>
<td>Any non-interfering channel</td>
<td>Vertical hold on oscilloscope</td>
<td>A4</td>
<td></td>
<td>Adjust for maximum grid and symmetrical response similar to Fig. 2 with markers as shown. (Sweep range guide.)</td>
</tr>
<tr>
<td>5.</td>
<td>51, 251C</td>
<td>Any non-interfering channel</td>
<td>Vertical hold on oscilloscope</td>
<td>A5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>51, 261C</td>
<td>Any non-interfering channel</td>
<td>Vertical hold on oscilloscope</td>
<td>A6</td>
<td></td>
<td>Adjust for maximum grid and symmetrical response similar to Fig. 3 with markers as shown.</td>
</tr>
</tbody>
</table>

SOUND IF ALIGNMENT

To reach Sound IF transformers for alignment, remove center circuit board. Remove two screws on both power supplies and slide assembly into mounting hole in chassis. Plug in circuit board and turn on set.

<table>
<thead>
<tr>
<th>SIGNAL GENERATOR COUNTRY</th>
<th>SIGNAL GENERATOR FREQUENCY</th>
<th>CHANNEL</th>
<th>CONNECT VITR</th>
<th>ADJUST</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. High side to point .</td>
<td>51, M51C</td>
<td>Any non-interfering channel</td>
<td>DC probe to point .</td>
<td>A0, A1, A2, A3</td>
<td>Adjust for maximum deflection. Disconnect test equipment and adjust all with weak air signal for minimum distortion in sound.</td>
</tr>
</tbody>
</table>

PUSHBUTTON ASSEMBLY

SET 588 FOLDER 2

PAGE 7
A PHOTOFACT STANDARD NOTATION SCHEMATIC

© Howard W. Sams & Co., Inc. 1962

A PHOTOFAC'T STANDARD NOTATION SCHEMATIC

© Howard W. Sams & Co., Inc. 1962

2SA161

2SA162

216
213

R218
R203
214
212
210
207
203
205
206
208
209
215

R212
R211
R210
R208
C221
C204
C205
C206
C207
C209
C210
C211
C212
C213
C214
C215
C216
C217
C218
C219
C220
C222
C224
C225
C226

VHF TUNER SK-40020-51
ML-6209
SONY MODEL
Fixed Capacitors

<table>
<thead>
<tr>
<th>Capacitor Value (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Electrolytic Capacitors (cont)

<table>
<thead>
<tr>
<th>Capacitor Value (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Capacitor Value (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Resistors

<table>
<thead>
<tr>
<th>Resistor Value (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Transformers

<table>
<thead>
<tr>
<th>Transformer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Filters

<table>
<thead>
<tr>
<th>Filter Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Batteries

<table>
<thead>
<tr>
<th>Battery Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes

- All capacitors and resistors are marked with the same values as indicated in the table.
- Transformers and filters are marked with their respective values.
- Batteries are marked with their respective types and values.
- Miscellaneous items are marked with their respective categories and values.

Numbers and values are placeholders for demonstration purposes.